Cover image

Don’t Forget How to Feel: Teaching Motion Models Empathy Without Amnesia

Opening — Why this matters now Embodied AI has learned how to move. It has learned how to listen. It has even learned how to respond. But when it comes to learning how to feel, most systems quietly panic the moment the world changes. Robots trained to walk sadly forget how to do so once they start running. Avatars that learned exaggerated emotion on stage lose subtlety in sports. This isn’t a bug—it’s the inevitable outcome of static datasets colliding with a dynamic world. ...

December 23, 2025 · 4 min · Zelina
Cover image

Echoes, Not Amnesia: Teaching GUI Agents to Remember What Worked

Opening — Why this matters now GUI agents are finally competent enough to click buttons without embarrassing themselves. And yet, they suffer from a strangely human flaw: they forget everything they just learned. Each task is treated as a clean slate. Every mistake is patiently re‑made. Every success is quietly discarded. In a world obsessed with scaling models, this paper asks a simpler, sharper question: what if agents could remember? ...

December 23, 2025 · 3 min · Zelina
Cover image

Policy Gradients Grow Up: Teaching RL to Think in Domains

Opening — Why this matters now Reinforcement learning keeps winning benchmarks, but keeps losing the same argument: it doesn’t generalize. Train it here, deploy it there, and watch confidence evaporate. Meanwhile, classical planning—decidedly uncool but stubbornly correct—has been quietly producing policies that provably work across arbitrarily large problem instances. This paper asks the uncomfortable question the RL community often dodges: can modern policy-gradient methods actually learn general policies, not just big ones? ...

December 23, 2025 · 4 min · Zelina
Cover image

When LLMs Stop Guessing and Start Calculating

Opening — Why this matters now Large Language Models have already proven they can talk science. The harder question is whether they can do science—reliably, repeatably, and without a human standing by to fix their mistakes. Nowhere is this tension clearer than in computational materials science, where one incorrect parameter silently poisons an entire simulation chain. ...

December 23, 2025 · 3 min · Zelina
Cover image

About Time: When Reinforcement Learning Finally Learns to Wait

Opening — Why this matters now Reinforcement learning has become remarkably good at doing things eventually. Unfortunately, many real-world systems care about when those things happen. Autonomous vehicles, industrial automation, financial execution systems, even basic robotics all live under deadlines, delays, and penalties for being too early or too late. Classic RL mostly shrugs at this. Time is either implicit, discretized away, or awkwardly stuffed into state features. ...

December 22, 2025 · 4 min · Zelina
Cover image

Doctor GPT, But Make It Explainable

Opening — Why this matters now Healthcare systems globally suffer from a familiar triad: diagnostic bottlenecks, rising costs, and a shortage of specialists. What makes this crisis especially stubborn is not just capacity—but interaction. Diagnosis is fundamentally conversational, iterative, and uncertain. Yet most AI diagnostic tools still behave like silent oracles: accurate perhaps, but opaque, rigid, and poorly aligned with how humans actually describe illness. ...

December 22, 2025 · 4 min · Zelina
Cover image

LLMs, Gotta Think ’Em All: When Pokémon Battles Become a Serious AI Benchmark

Opening — Why this matters now For years, game AI has been split between two extremes: brittle rule-based scripts and opaque reinforcement learning behemoths. Both work—until the rules change, the content shifts, or players behave in ways the designers didn’t anticipate. Pokémon battles, deceptively simple on the surface, sit exactly at this fault line. They demand structured reasoning, probabilistic judgment, and tactical foresight, but also creativity when the meta evolves. ...

December 22, 2025 · 4 min · Zelina
Cover image

Same Moves, Different Minds: Rashomon Comes to Sequential Decision-Making

Opening — Why this matters now Modern AI systems are increasingly judged not just by what they do, but by why they do it. Regulators want explanations. Engineers want guarantees. Businesses want robustness under change. Yet, quietly, a paradox has been growing inside our models: systems that behave exactly the same on the surface may rely on entirely different internal reasoning. ...

December 22, 2025 · 4 min · Zelina
Cover image

When AI Argues With Itself: Why Self‑Contradiction Is Becoming a Feature, Not a Bug

Opening — Why this matters now Multimodal large language models (MLLMs) are getting dangerously good at sounding right while being quietly wrong. They caption images with confidence, reason over charts with poise, and still manage to contradict themselves the moment you ask a second question. The industry’s usual response has been more data, more parameters, more alignment patches. ...

December 22, 2025 · 3 min · Zelina
Cover image

When Reasoning Meets Its Laws: Why More Thinking Isn’t Always Better

Opening — Why this matters now Reasoning models are supposed to think. That’s the selling point. More tokens, deeper chains, longer deliberation—surely that means better answers. Except it doesn’t. As Large Reasoning Models (LRMs) scale, something uncomfortable is emerging: they often think more when they should think less, and think less when problems are actually harder. ...

December 22, 2025 · 4 min · Zelina