Cover image

Click with Confidence: Teaching GUI Agents When *Not* to Click

Opening — Why this matters now Autonomous GUI agents are finally leaving demos and entering production. They book meetings, fill forms, manage dashboards—and occasionally approve payments they should not. The uncomfortable truth is that one mis-click can be irreversible. Yet most GUI grounding models behave with absolute confidence, even when they are guessing. The paper “SafeGround: Know When to Trust GUI Grounding Models via Uncertainty Calibration” tackles this exact failure mode. Its core argument is simple but sharp: progress in GUI agents is no longer bottlenecked by accuracy alone, but by the absence of calibrated doubt. ...

February 3, 2026 · 4 min · Zelina
Cover image

DRIFT-BENCH: When Agents Stop Asking and Start Breaking

Opening — Why this matters now LLM agents are no longer just answering questions. They are executing SQL, calling APIs, modifying system state, and quietly making decisions that stick. Yet most evaluations still assume a fantasy user: precise, unambiguous, and cooperative. In real deployments, users are vague, wrong, impatient, or simply human. This gap is no longer academic. As agents enter finance, operations, and infrastructure, the cost of misunderstanding now rivals the cost of misreasoning. DRIFT‑BENCH arrives precisely at this fault line. ...

February 3, 2026 · 4 min · Zelina
Cover image

Identity Crisis: How a Trivial Trick Teaches LLMs to Think Backwards

Opening — Why this matters now Large language models can write poetry, solve Olympiad-level math problems, and simulate entire businesses—yet they reliably fail at a task that feels almost insulting in its simplicity: if Alice’s husband is Bob, they struggle to answer who is Bob’s wife? This failure mode, known as the reversal curse, has become something of an embarrassment for autoregressive models. More troublingly, a growing body of literature has argued that the curse is fundamental: a baked-in limitation of left-to-right next-token prediction. If true, this would place a hard ceiling on what today’s LLM architectures can ever reliably reason about. ...

February 3, 2026 · 4 min · Zelina
Cover image

RAudit: When Models Think Too Much and Still Get It Wrong

Opening — Why this matters now Inference-time reasoning is having a moment. From DeepSeek-style thinking models to multi-agent orchestration frameworks, the industry has largely agreed on one thing: more thinking must be better thinking. Add more steps, more debate, more critique, and truth should eventually emerge. The paper behind this article offers an uncomfortable correction. More thinking often means more ways to fail — and sometimes, more ways to abandon correct answers. ...

February 3, 2026 · 5 min · Zelina
Cover image

When Language Learns to Doubt Itself: Self-Contradiction as an Upgrade Path for Multimodal AI

Opening — Why this matters now Multimodal large language models (MLLMs) can describe, caption, and reason about images with impressive fluency. Yet beneath the polished surface lies a persistent flaw: they often say the right thing without truly understanding it. This mismatch—known as the generation–understanding gap—has become a quiet bottleneck as MLLMs move from demos into decision‑support systems, compliance tools, and autonomous agents. ...

February 3, 2026 · 3 min · Zelina
Cover image

Agentic Systems Need Architecture, Not Vibes

Opening — Why this matters now Agentic AI has officially entered its awkward adolescence. It can plan, call tools, collaborate, and occasionally impress investors—but it also hallucinates, forgets, loops endlessly, and collapses under modest real‑world complexity. The problem is no longer model capability. It’s architecture. Today’s agent systems are mostly stitched together through intuition, blog wisdom, and prompt folklore. Powerful, yes—but brittle. What’s missing is not another clever prompt trick, but an engineering discipline. ...

February 2, 2026 · 3 min · Zelina
Cover image

GAVEL: When AI Safety Grows a Rulebook

Opening — Why this matters now AI safety is drifting toward an uncomfortable paradox. The more capable large language models become, the less transparent their internal decision-making appears — and the more brittle our existing safeguards feel. Text-based moderation catches what models say, not what they are doing. Activation-based safety promised to fix this, but in practice it has inherited many of the same flaws: coarse labels, opaque triggers, and painful retraining cycles. ...

February 2, 2026 · 4 min · Zelina
Cover image

Grading the Doctor: How Health-SCORE Scales Judgment in Medical AI

Opening — Why this matters now Healthcare LLMs have a credibility problem. Not because they cannot answer medical questions—many now ace exam-style benchmarks—but because real medicine is not a multiple-choice test. It is open-ended, contextual, uncertain, and unforgiving. In that setting, how a model reasons, hedges, and escalates matters as much as what it says. ...

February 2, 2026 · 4 min · Zelina
Cover image

When Models Start Remembering Too Much

Opening — Why this matters now Large language models are no longer judged solely by what they can generate, but by what they remember. As models scale and datasets balloon, a quiet tension has emerged: memorization boosts fluency and benchmark scores, yet it also raises concerns around data leakage, reproducibility, and governance. The paper examined here steps directly into that tension, asking not whether memorization exists — that debate is settled — but where, how, and why it concentrates. ...

February 2, 2026 · 3 min · Zelina
Cover image

When Empathy Needs a Map: Benchmarking Tool‑Augmented Emotional Support

Opening — Why this matters now Emotional support from AI has quietly moved from novelty to expectation. People vent to chatbots after work, during grief, and in moments of burnout—not to solve equations, but to feel understood. Yet something subtle keeps breaking trust. The responses sound caring, but they are often wrong in small, revealing ways: the time is off, the location is imagined, the suggestion doesn’t fit reality. Empathy without grounding turns into polite hallucination. ...

February 1, 2026 · 4 min · Zelina