When Agents Think in Waves: Diffusion Models for Ad Hoc Teamwork
Opening — Why this matters now Collaboration is the final frontier of autonomy. As AI agents move from single-task environments to shared, unpredictable ones — driving, logistics, even disaster response — the question is no longer can they act, but can they cooperate? Most reinforcement learning (RL) systems still behave like lone wolves: excellent at optimization, terrible at teamwork. The recent paper PADiff: Predictive and Adaptive Diffusion Policies for Ad Hoc Teamwork proposes a striking alternative — a diffusion-based framework where agents learn not just to act, but to anticipate and adapt, even alongside teammates they’ve never met. ...