Cover image

The Missing Metric: Measuring Agentic Potential Before It’s Too Late

The Missing Metric: Measuring Agentic Potential Before It’s Too Late In the modern AI landscape, models are not just talkers—they are becoming doers. They code, browse, research, and act within complex environments. Yet, while we’ve become adept at measuring what models know, we still lack a clear way to measure what they can become. APTBench, proposed by Tencent Youtu Lab and Shanghai Jiao Tong University, fills that gap: it’s the first benchmark designed to quantify a model’s agentic potential during pre-training—before costly fine-tuning or instruction stages even begin. ...

November 2, 2025 · 4 min · Zelina
Cover image

Thinking Inside the Gameboard: Evaluating LLM Reasoning Step-by-Step

LLMs are great at spitting out answers—but are they any good at thinking through problems? A new benchmark, AdvGameBench, introduces a process-based evaluation approach that places LLMs into three rule-based strategic games to measure not outcomes, but the quality of reasoning. Developed by Yuan et al., this framework focuses on how LLMs plan, revise, and make resource-limited decisions in dynamic settings. Three Games, Three Cognitive Demands 1. Tower Defense tests spatial planning and rule-following. Models place defenders on a battlefield to block enemies—positioning, cooldowns, and cost management are key. ...

June 20, 2025 · 3 min · Zelina