
How Sparse is Your Thought? Cracking the Inner Logic of Chain-of-Thought Prompts
Chain-of-Thought (CoT) prompting has become a go-to technique for improving multi-step reasoning in large language models (LLMs). But is it really helping models think better—or just encouraging them to bluff more convincingly? A new paper from Leiden University, “How does Chain of Thought Think?”, delivers a mechanistic deep dive into this question. By combining sparse autoencoders (SAEs) with activation patching, the authors dissect whether CoT actually changes what a model internally computes—or merely helps its outputs look better. ...