
The Outlier Is a Lie: Quantization Breakthroughs with OSP
When it comes to deploying large language models (LLMs) efficiently, few challenges are as stubborn—and misunderstood—as activation outliers. For years, engineers have treated them like a natural disaster: unpredictable but inevitable. But what if they’re more like bad habits—learned and fixable? That’s the provocative premise behind a new framework called Outlier-Safe Pre-Training (OSP). Developed by researchers at Korea University and AIGEN Sciences, OSP proposes a simple but radical shift: instead of patching over outliers post hoc with quantization tricks, why not train the model to never form outliers in the first place? ...