Cover image

Bracket Busters: When Agentic LLMs Turn Law into Code (and Catch Their Own Mistakes)

TL;DR Agentic LLMs can translate legal rules into working software and audit themselves using higher‑order metamorphic tests. This combo improves worst‑case reliability (not just best‑case demos), making it a practical pattern for tax prep, benefits eligibility, and other compliance‑bound systems. The Business Problem Legal‑critical software (tax prep, benefits screening, healthcare claims) fails in precisely the ways that cause the most reputational and regulatory damage: subtle misinterpretations around thresholds, phase‑ins/outs, caps, and exception codes. Traditional testing stumbles here because you rarely know the “correct” output for every real‑world case (the oracle problem). What you do know: similar cases should behave consistently. ...

October 1, 2025 · 5 min · Zelina
Cover image

Keys to the Kingdom… with a Chaperone: How Agentic JWT Grounds AI Agents in Real Intent

If autonomous agents are the new employees, your bearer tokens are their keycards. Today’s OAuth/JWT keycards open too many doors for too long, and no one can prove why a door was opened—only that it was. This is fine for deterministic apps; it breaks for stochastic, tool‑calling LLM agents. Agentic JWT (A‑JWT) proposes a surgical fix: bind every API call to a cryptographically verifiable intent (and optional workflow step), and give each agent its own identity plus proof‑of‑possession (PoP) keys. Zero‑Trust, but practical. ...

October 1, 2025 · 5 min · Zelina
Cover image

Pipes by Prompt, DAGs by Design: Why Hybrid Beats Hero Prompts

TL;DR Turning natural‑language specs into production Airflow DAGs works best when you split the task into stages and let templates carry the structural load. In Prompt2DAG’s 260‑run study, a Hybrid approach (structured analysis → workflow spec → template‑guided code) delivered ~79% success and top quality scores, handily beating Direct one‑shot prompting (~29%) and LLM‑only generation (~66%). Deterministic Templated code hit ~92% but at the price of up‑front template curation. What’s new here Most discussions about “LLMs writing pipelines” stop at demo‑ware. Prompt2DAG treats pipeline generation like software engineering, not magic: 1) analyze requirements into a typed JSON, 2) convert to a neutral YAML workflow spec, 3) compile to Airflow DAGs either by deterministic templates or by LLMs guided by those templates, 4) auto‑evaluate for style, structure, and executability. The result is a repeatable path from English to a runnable DAG. ...

October 1, 2025 · 5 min · Zelina
Cover image

Provenance, Not Prompts: How LLM Agents Turn Workflow Exhaust into Real-Time Intelligence

TL;DR Most teams still analyze pipelines with brittle SQL, custom scripts, and static dashboards. A new reference architecture shows how schema-driven LLM agents can read workflow provenance in real time—across edge, cloud, and HPC—answering “what/when/who/how” questions, plotting quick diagnostics, and flagging anomalies. The surprising finding: guideline-driven prompting (not just bigger context) is the single highest‑ROI upgrade. Why this matters (for operators, data leads, and CTOs) When production AI/data workflows sprawl across services (queues, training jobs, GPUs, file systems), the real telemetry isn’t in your app logs; it’s in the provenance—the metadata of tasks, inputs/outputs, scheduling, and resource usage. Turning that exhaust into live answers is how you: ...

October 1, 2025 · 4 min · Zelina
Cover image

Snapshot, Then Solve: InfraMind’s Playbook for Mission‑Critical GUI Automation

Why this paper matters (for operators, not just researchers) Industrial control stacks (think data center DCIM, grids, water, rail) are hostile terrain for “general” GUI agents: custom widgets, nested hierarchies, air‑gapped deployment, and actions that can actually break things. InfraMind proposes a pragmatic agentic recipe that acknowledges these constraints and designs for them. The result is a system that learns an interface before it tries to use it, then executes with auditability and guardrails. ...

October 1, 2025 · 5 min · Zelina
Cover image

Answer, Then Audit: How 'ReSA' Turns Jailbreak Defense Into a Two‑Step Reasoning Game

TL;DR Reasoned Safety Alignment (ReSA) reframes safety from guarding inputs to auditing intended outputs. The model first drafts a concise intended answer summary in hidden reasoning, then runs a safety analysis on that summary before issuing the final reply. In evaluations across StrongREJECT, HarmBench, and AdvBench with multiple adaptive attacks (PAIR, PAP, GPTFuzzer, ReNeLLM, TAP, DeepInception), ReSA‑tuned models beat fine‑tuned and post‑hoc baselines while reducing over‑refusals and preserving reasoning performance. Notably, authors report competitive gains with only ~500 training samples, hinting that robust safety behaviors may be learned data‑efficiently. ...

September 20, 2025 · 5 min · Zelina
Cover image

Benchmarks That Fight Back: Adaptive Testing for LMs

TL;DR Static benchmarks treat every question as equally informative; reality doesn’t. FLUID BENCHMARKING runs language-model evals like adaptive exams: it estimates each item’s difficulty and discrimination, then routes the model to the most informative items and scores it in ability space instead of raw accuracy. Result: higher validity, lower variance, better resistance to saturation—at a fraction of the items and cost. Why today’s LM scores keep lying to you Noise: Two adjacent training checkpoints can jiggle up/down purely from sampling variance. Label problems & stale sets: Old leaderboards accumulate mislabeled or gameable items. Saturation: Frontier models cluster near 100%—differences become invisible. Procurement risk: If your ranking flips when you change the random seed or the subset size, you’re buying model lottery tickets, not capabilities. We’ve argued in past Cognaptus pieces that “benchmarks are microscopes, not mirrors”—the microscope has to be focused. FLUID BENCHMARKING dials the focus automatically. ...

September 20, 2025 · 5 min · Zelina
Cover image

Echoes Without Clicks: How EchoLeak Turned Copilot Into a Data Drip

Prompt injection just graduated from theory to incident response. EchoLeak (CVE‑2025‑32711) demonstrated a zero‑click exfiltration chain inside Microsoft 365 Copilot: a single crafted external email seeded hidden instructions; Copilot later pulled that message into context, encoded sensitive details into a URL, and the client auto‑fetched the link—leaking data without the user clicking anything. The final twist: a CSP‑allowed Teams proxy retrieved the attacker’s URL on Copilot’s behalf. Below I unpack why standard defenses failed, and what an enterprise‑ready fix looks like. ...

September 20, 2025 · 5 min · Zelina
Cover image

Org Charts for Robots: What AgentArch Really Tells Us About Enterprise AI

If you’ve ever tried turning a clever chatbot into a reliable employee, you already know the pain: great demos, shaky delivery. AgentArch, a new enterprise-focused benchmark from ServiceNow, is the first study I’ve seen that tests combinations of agent design choices—single vs multi‑agent, ReAct vs function-calling, summary vs complete memory, and optional “thinking tools”—across two realistic workflows: a simple PTO process and a gnarly customer‑request router. The result is a cold shower for one‑size‑fits‑all playbooks—and a practical map for building systems that actually ship. ...

September 20, 2025 · 4 min · Zelina
Cover image

Right Tool, Right Thought: Difficulty-Aware Orchestration for Agentic LLMs

The punchline Static multi‑agent pipelines are expensive on easy questions and underpowered on hard ones. DAAO (Difficulty‑Aware Agentic Orchestration) proposes a controller that first estimates the difficulty of each query, then composes a workflow (operators like CoT, ReAct, Multi‑Agent Debate, Review/Ensemble) and finally routes each operator to the most suitable model in a heterogeneous LLM pool. The result: higher accuracy and lower cost on suite benchmarks. Why this matters (business lens) Spend less on routine queries. Easy tickets don’t need five agents and GPT‑Ultra—DAAO keeps them shallow and cheap. Don’t whiff on the edge cases. When the question is gnarly, DAAO deepens the DAG and upgrades the models only where it pays. Procurement leverage. Mixing open‑weights (Llama/Qwen) with commercial APIs lets you arbitrage price–performance per step. What DAAO actually does DAAO is three tightly coupled decisions per query: ...

September 20, 2025 · 4 min · Zelina